
The History, Controversy, and Evolution of the
Goto statement

Andru Luvisi

Sonoma State University

ABSTRACT

This talk will touch on how standard usage patterns for
the Goto statement became embodied in higher level control
structures, ways in which higher level control structures
can often express the intent of the programmer more clearly
than lower level control structures, some of the controversy
surrounding the Goto statement, common reasons for and ways
of using Goto, and common ways of implementing arbitrary
control structures in languages that do not contain the Goto
statement. The latest version of this handout is available
from http://www.sonoma.edu/users/l/luvisi/goto/

1. History

1.1. The Stored Program Computer

The main predecessors of the stored program computer were the Mark I and
the Eniac. Both were used primarily for running a calculation multiple
times, and both lacked anything which we would recognize today as gen-
eral control capabilities.

The Mark I was controlled by instructions read from paper tape, but it
had very limited control capabilities. There was an instruction for
transferring control from one tape reader to another, which was used for
implementing a sort of subroutine facility.

The Eniac was programmed by hooking its various components up to each
other in different configurations. It was, in theory, possible to have
decisions about the flow of control within the machine be based on the
value of a piece of data, but none of our surviving program diagrams
from the early days show this being done.

The earliest publications on the stored program computer, even those
which predate the first implementations[1, 2] include jumps and condi-
tional jumps in the proposed instruction sets.

The Edsac[3], inspired heavily by the First Draft, w as probably the

10 March 2008



-2-

earliest computer that a modern programmer would recognize. Shortly
after becoming operational, it had been used in all sorts of unantici-
pated ways, including games such as Tic Tac Toe which used a debugging
display as a crude bitmap.

Comparing the stored program computer to its most immediate predeces-
sors, the big difference, the final feature which turned the computer
from a rapid automatic calculator into a fully universal Turing machine,
was the conditional jump instruction.

1.2. Fortran

Fortran 1 introduced the automatic conversion of mathematical formulas
into assembly and machine code, but kept the unconditional and condi-
tional jumps of machine code, naming them "goto" and "if." Fortran also
added the "computed goto" which offered the programmer the ability to
jump to one of many targets based on the value of a variable, offering
the programmer something similar to the jump tables of machine code.

1.3. Algol 60

Algol 60 [4] kept the goto statement and added some truly psychotic
variations. Jump targets could be either numbers or identifiers. It
also added a powerful "for loop" capabiility and blocks. Blocks allowed
multiple statements to be grouped together and treated as a single
statement, and made it possible for any number of statements to be con-
ditionally executed by an "if" statement without using goto. The com-
puted goto of Fortran was replaced by the switch, which had a syntax
resembling an array of labels, and bears no resemblance to the more
familiar switch statement from C.

1.4. Pascal

Pascal kept the goto statement, but only allowed the programmer to use
numbers as labels. The Algol switch was replaced by the case state-
ment[5] . The case statement would execute one of many chunks of code
based on the value of a variable.

1.5. C

The C switch statement (based on the BCPL[6] SWITCHON statement) had the
now familiar fall-through.

2. Evolution

1 See http://www.softwarepreservation.org/projects/FORTRAN

10 March 2008



-3-

Over time, people noticed that conditional jumps were often being used
over and over in the same ways. Abbreviations and higher level syntax
were developed for some of these usage patterns.

2.1. Jump Tables

The jump table of assembly gave way to the computed goto of Fortran

ON I GOTO 110, 120, 130, 140

which gave way to Algol switch

switch s = label1, label2, label3;
...
goto s[i];

which gave way to Pascal case

case i of
1: ...
2: ...
3: ...

end

which gave way to the C switch.

switch(i) {
case 1: ...
case 2: ...
case 3: ...

}

2.2. Conditional Jump for skipping stuff

The conditional jump used for skipping stuff

IF ... THEN GOTO 50
...
50 ...

turned into an if statement with a compound body.

if (...) {
...

}

10 March 2008



-4-

2.3. Conditional Jump for looping

The conditional jump for looping turned into the now ubiquitous loop
syntaxes such as for, while, until, and do/while loops.

2.4. Jumping to an error handler

The jump to an error handler

ON ERROR GOTO 9999

evolved into modern exceptions.

try {
...
throw(...);
...

} c atch(...) {
...

}

2.5. Jumping out of loops

The conditional jump for escaping out of a loop

FOR I = 1 to 10
...
IF ... THEN GOTO 10
...

NEXT I
10 ...

evolved into break statements and labeled break statements.

for(i = 0; i < 10; i++) {
if(...) break;

}

LOOP:
for(i = 0; i < 10; i++) {

if(...) break LOOP;
}

3. The Controversy

In 1963 Peter Naur wrote an article[7] where he pointed out that many of
the gotos in people’s Algol 60 code were actually for loops in disguise
or ifs with a compound body in disguise. His basic argument was that if
a piece of code is doing something which the language has a builtin syn-
tax for, then it will be easier for a reader to understand the code if
it uses that builtin syntax. For example, upon seeing a for loop with a

10 March 2008



-5-

compound body, a reader will immediately know that the code is a loop,
what code is in the loop, and what the start and end conditions for the
loop are. If the same code is written using gotos, then the reader must
figure this all out.

In 1968, Dijkstra wrote his now famous letter to the editor[8] where he
called for abolishing all use of the goto statement. He also famously
argued[9] that all programs should be constructed from loops, condition-
als, and sequential execution, with every piece of code (loop, condi-
tional, function, etc.) having only one entry point and only one exit
point.

Donald Knuth wrote a wonderful response[10], from which I have taken
some of the following ideas. If you read only one of my references,
Knuth’s Structured Programming with Goto Statements is the one that you
should read. It’s also interesting to note that Knuth speaks of commu-
nications with Dijkstra where Dijkstra conceded that some of Knuth’s
gotos were appropriate.

Here are a few of my favorite quotes from Knuth’s article.

"The real goal is to formulate our programs in such a way that
they are easily understood."

"[W]e shouldn’t merely remove go to statements because it’s the
fashionable thing to do; the presence or absence of go to
statements is not really the issue. The underlying structure
of the program is what counts, and we want only to avoid usages
which somehow clutter up the program."

"[U]ndisciplined go to statements make program structure harder
to perceive, and they are often symptoms of a poor conceptual
formulation. But there has been far too much emphasis on go to
elimination instead of on the really important issues; people
have a natural tendency to set up an easily understood quanti-
tative goal like the abolition of jumps, instead of working
directly for a qualitative goal like good program structure."

4. Common Uses

4.1. The read/process loop and the process/read loop

Some problems are most naturally solved with a loop that is run n and a
half times.

Soloway, Bonar, and Ehrlich[11] ran an experiment where they gave two
groups of students the same problem. One group was given the equivalent
of a break statement, and one was not. 24% of the novices who had a
break statement were able to write correct programs, while only 14% of
those without a break statement succeeded. For intermediates, the

10 March 2008



-6-

percentages were 61% and 36%. For advanced students, 96% and 69%.

The problem was this:

Write a Pascal program which reads in a series of integers, and
which computes the average of these numbers. The program
should stop reading integers when it has read the number 99999.
NOTE: the final 99999 should NOT be reflected in the average
you calculate.

I’m going to write my examples in C since I don’t happen to have a Pas-
cal compiler with their special additions handy.

One way to solve this sort of problem is with a loop that reads and then
processes each piece of data.

#include <stdio.h>

int main(int argc, char *argv[], char *envp[]) {
int count = 0;
int total = 0;
int current;
for(;;) {

scanf("%d", &current);
if(current == 99999) {

break;
} e lse {

total = total + current;
count = count + 1;

}
}
if(count > 0)

printf("%d\n", total/count);
else

printf("No numbers input. average undefined\n");
return 0;

}

One way to avoid the break statement is to change fron a read/process
loop to a process/read loop.

scanf("%d", &current);
while(current != 99999) {

total = total + current;
count = count + 1;
scanf("%d", &current);

}

This has some disadvantages.

10 March 2008



-7-

The read code is duplicated. This creates the danger that if the read
code needs to be changed later, the programmer may forget to change it
in both places.

The process and read statements that are executed during a single pass
through the loop don’t really have anything to do with each other. Item
N is b eing processed, but item N+1 is being read for use during the next
pass through the loop. This means that a single pass through the loop
cannot be understood by itself, as "These are the statements to read and
process item N" but must be understood as it relates to the previous and
next executions of the loop.

It is possible to avoid using a break statement while still reading and
writing the same item during a single pass through the loop, but at the
expense of either a flag or a duplicated test.

int done = 0;
while(!done) {

scanf("%d", &current);
if(current == 99999)

done = 1;
else {

total = total + current;
count = count + 1;

}
}

while(current != 99999) {
scanf("%d", &current);
if(current != 99999) {

total = total + current;
count = count + 1;

}
}

Both of these approaches contain two tests each time through the loop.
One has a flag, whose only purpose is to simulate a break statement and
get control to the end of the loop, but in a more difficult to under-
stand manner than with a break statement. The other duplicates the code
which tests for the end of the input data, which poses the already men-
tioned dangers to code maintenance. Both approaches are also unneces-
sarily inefficient, performing two tests each time through the loop when
one would suffice. This may not be a problem in most problem domains,
but it is in some, and it is always ugly. Whether or not it more ugly
than an exit from the middle of the loop is, of course, a matter of
opinion.

It is also worth noting that the original read/process loop above still
contains only one entry and only one exit. The exit just happens to be
in the middle of the loop. To construct a formal proof, those predi-
cates which are known to be true at the point of the break statement can

10 March 2008



-8-

be assumed immediately after the end of the loop.

Roberts[12] points out some other very compelling evidence for the natu-
ralness of the read/process loop over the process/read loop. Most
authors of Pascal textbooks describe data processing problems first in
terms of a read/process loop which they then convert into the pro-
cess/read loop!

This issue is sometimes handled by performing the read operation within
the condition of the loop. Most C programmers are familiar with the
idiom

while((ch = getchar()) != EOF) {
...

}

and Perl programmers will recognize

while(<>) {
...

}

but this is just a tricky way of writing what is essentially the first
read/process loop above. As the methods for reading a record and test-
ing for termination get longer, this approach leads to horribly tortured
code. Furthermore, it confuses expressions and statements. Performing
side effects within expressions creates its own cognitive difficulties
for the reader of the code.

Trying to solve the averaging problem this way, we get something like

while(scanf("%d", &current), current != 99999) {
total = total + current;
count = count + 1;

}

All in all, I think the read/process loop with an exit in the middle is
the easiest to write, the easiest to understand, and the easiest to
prove correct.

4.2. Removing recursion

Some algorithms are most naturally expressed recursively. Sometimes we
want a non-recursive implementation of one of these algorithms. Maybe
we are on a platform where function calls are slow, the recursive ver-
sion would perform many function calls, and we need the speed. Maybe
our function call stack isn’t deep enough to handle the recursive ver-
sion. Judicious use of the goto statement can allow us to remove recur-
sion while still keeping the general structure of the recursive version.

10 March 2008



-9-

For example, consider a postorder traversal of a tree.

void postprint(struct node *np) {
if(np != NULL) {

postprint(np->left);
postprint(np->right);
printf("%s\n", np->s);

}
}

This is a fairly straightforward implementation. It is easy to prove
correct with induction on the height of the tree. In fact, it is almost
correct by definition. It traverses the left subtree, then the right
subtree, and finally the current node.

Removing recursion by using gotos is a basically mechanical process.
Each recursive call saves some information on a stack, reassigns the
arguments (in a call by value language), and jumps to the beginning of
the function. At the end of the function, we test to see whether the
stack is empty. If not, we do a "fake return" by popping some informa-
tion off of the stack, and jumping back to the appropriate place. If
the stack is empty, we just return.

void postprint(struct node *np) {
int flag;
start:
if(np != NULL) {

/* fake recursive call postprint(np->left); */
push(np, 0);
np = np->left;
goto start;
after_first:

/* fake recursive call postprint(np->right); */
push(np, 1);
np = np->right;
goto start;
after_second:

printf("%s\n", np->s);
}
if(stack_empty()) {

return;
} e lse {

/* fake return */
pop(&np, &flag);
if(flag == 0) goto after_first;
if(flag == 1) goto after_second;

}
}

This version is much longer than the recursive version, but the transla-
tion is mechanical, and by squinting a little bit we can still see the

10 March 2008



-10-

basic structure of the recursive version hiding in this code, and con-
vince ourselves that it still does what we want it to.

With some additional effort, it is possible to remove the gotos, but the
result no longer bears any resemblance to the recursive version.

void postprint(struct node *np) {
int flag;

while(np != NULL) {
push(np, 0);
np = np->left;

}

while(!stack_empty()) {
pop(&np, &flag);
if(flag == 0) {

push(np, 1);
np = np->right;
while(np != NULL) {

push(np, 0);
np = np->left;

}
} e lse if(flag == 1) {

printf("%s\n", np->s);
}

}
}

This version uses no gotos, and is a little bit shorter than the version
with goto, but it bears no structural resemblance to the recursive ver-
sion. Indeed, the only reasons why I have any confidence that it will
behave correctly are the fact that I derived this through meaning pre-
serving transformations from the version using goto, and the fact that I
have tested it!

Also note the duplication of the while loop that chases down left point-
ers.

When manually removing recursion, the programmer is basically pretending
to be a compiler, by manually creating the machinery necessary to per-
form recursive function calls. When pretending to be a compiler, maybe
it is appropriate to use the tools of a compiler, such as jump state-
ments.

4.3. The Twelve Datums of Christmas

Sometimes it is necessary to allocate multiple resources in a single
function call. If, while these resources are being allocated, one of
them cannot be allocated, then any resources that have been successfully
allocated up to that point must be deallocated.

10 March 2008



-11-

This often looks something like this:

if((partridge = make_partridge()) == NULL)
return ERROR;

if((doves = make_doves()) == NULL) {
free_partridge(partridge);
return ERROR;

}
if((hens = make_hens()) == NULL) {

free_doves(doves);
free_partridge(partridge);
return ERROR;

}
...

To allocate 12 items, you end up with 66 deallocation statements, 55 of
which are duplicates. The duplicates can be avoided with a bunch of
nested if statements, but then we’re likely to use a return that’s not
at the end of the function (a hidden goto) and we’ll end up with heavily
nested blocks, which tend to be confusing in their own rite.

If we are willing to use goto, it is possible to make both the alloca-
tion and the error handling/deallocation into fairly straight line code.

if((partridge = make_partridge()) == NULL) goto partridge_error;
if((doves = make_doves()) == NULL) goto doves_error;
if((hens = make_hens()) == NULL) goto hens_error;
if((calling_birds = make_calling_birds()) == NULL) goto calling_birds_error;
if((rings = make_rings()) == NULL) goto rings_error;
...
return ...; /* successful return */

/* error handling code */
...
rings_error: free_calling_birds(calling_birds);
calling_birds_error: free_hens(hens);
hens_error: free_doves(doves);
doves_error: free_partridge(partridge);
partridge_error: return ERROR;

4.4. Retry

Sometimes you will find a goto used to retry a piece of code in an
exceptional situation[13]. In such cases, the label is usually called
something like "again" or "retry." Although most such cases can be
written as a loop, using a goto indicates to the reader that the code is
normally expected to execute only once, and repeating it is an unusual
occurrence. Loop syntax suggests to the reader that the enclosed code
is intended to run multiple times.

10 March 2008



-12-

4.5. Efficiency

Martin Hopkins has pointed out[14] that sometimes the goto statement can
offer a middle ground between staying at a high level and dropping into
assembly, allowing you to hand optimize some code in a higher level lan-
guage without having to work in assembly and give up portability. Linus
has done this in Linux kernel code 2, a nd W. Richard Stevens has done
this in networking kernel code 3 from time to time.

Knuth has proved 4 that without multi-level break statements, some gotos
cannot be eliminated without losing efficiency.

4.6. Other control structures which your language does not supply

Sometimes a problem is most naturally solved using a control structure
which is not present in the language being used. In these situations, a
programmer must find a way to make do with those control structures
which are available, perhaps simulating the desired control structure
using an existing control structure.

When faced with this situation, sometimes the goto statement is the eas-
iest base upon which to build.

4.7. When compiling from one language into another

Sometimes, when translating from one programming language into another,
it is easier to generate code that uses goto in the target language
rather than trying to map source language control structures into higher
level control structures in the target language.

4.8. Other

There are some other uses of goto which I don’t have time to go into
right now.

• T ail Recursion Optimization

• Coroutines

• I mplementing algorithms that are already expressed as an arbitrary
flowchart, such as those in The Art of Computer Programming[15]

• B reaking out of nested loops in languages without a multi-level
break (like C).

2 See http://kerneltrap.org/node/553/2131
3 See http://www.kohala.com/start/rstevensfaq.html
4 See "Structured Programming with Goto Statements"

10 March 2008



-13-

5. Goto replacements

Sometimes, a programmer needs to implement arbitrary flow control, but
the programmer is using a language which does not contain a goto state-
ment. Here are some possible approaches to solving this problem.

For these explanations, I will use a simple Basic program from a book on
programming in Basic[16].

10 PRINT "INTEGERS"
20 LET N = 1
30 PRINT N
40 LET N = N + 1
50 IF N <= 5 THEN 30

999 END

I w ill show a few ways to translate this program into one that does not
use goto while retaining the "flat" nature of its control flow.

5.1. A Goto by any other name

Some languages have a jump statement but it goes by another name. Com-
mon Lisp and Logo have "go." Other names to look for include "jump,"
"branch," and "transfer."

5.2. Tail call optimization

Tail calls are essentially gotos with the ability to send parameters.
Here is a possible, and fairly straightforward translation of the above
program into Scheme 5, s uch as might be created by a very naive compiler.

(define n #f)
(define (line-10) (display "Integers") (newline) (line-20))
(define (line-20) (set! n 1) (line-30))
(define (line-30) (display n) (newline) (line-40))
(define (line-40) (set! n (+ n 1)) (line-50))
(define (line-50) (if (<= n 5) (line-30) (line-999)))
(define (line-999) #f)
(line-10)

5 See http://www.schemers.org/

10 March 2008



-14-

Of course, if a programmer were writing this by hand, the programmer
would probably combine some of these procedures.

(define n #f)
(define (line-10)

(display "Integers") (newline)
(set! n 1)
(line-30))

(define (line-30)
(display n) (newline)
(set! n (+ n 1))
(if (<= n 5) (line-30) (line-999)))

(define (line-999) #f)
(line-10)

As an apology for doing such a horrible thing to such a beautiful lan-
guage, I feel that I must include the following option, even though it
doesn’t really have anything to do with this talk.

(define (print-ints low high)
(if (> low high)

#f
(begin

(display low) (newline)
(print-ints (+ low 1) high))))

(display "Integers") (newline)
(print-ints 1 5)

And this one.

(display "Integers") (newline)
(do ((i 1 (+ i 1)))

((> i 5) #f)
(display i) (newline))

5.3. Trampoline

If a language has some way to represent a piece of code (usually a pro-
cedure or function) as a piece of data which can be stored in a variable
or returned from a procedure, for the price of a little bit of speed, a
trampoline[17] can be used.

10 March 2008



-15-

In C it might look like this.

#include <stdio.h>
int n;

void (*curr_line)();
void line_10();
void line_20();
void line_30();
void line_40();
void line_50();
void line_999();

void line_10() { p rintf("Integers\n"); curr_line = line_20; }
void line_20() { n = 1; c urr_line = line_30; }
void line_30() { p rintf("%d\n", n); curr_line = line_40; }
void line_40() { n = n + 1; c urr_line = line_50; }
void line_50() { i f(n <= 5) curr_line = line_30; else curr_line = line_999; }
void line_999() { curr_line = NULL; }

int main(int argc, char *argv[], char *envp[]) {
curr_line = line_10;
while(curr_line != NULL) {

(*curr_line)();
}
return 0;

}

This same basic idea will work in any language which has something
resembling function pointers. JavaScript’s closures or Forth’s execu-
tion tokens or anything similar will work.

Tarditi, Lee and Acharya report[18] that using this approach (with a few
other optimizations) their C backend for the SML/NJ compiler generated
code that was 70% to 100% slower than the native assembly language back-
end.

Guy Steele used a similar idea in his Scheme compiler RABBIT[19].

5.4. Run and return successor

This object oriented design pattern is a variation of the State pattern
from the Gang of Four 6[20]. It is the object oriented version of a
trampoline.

6 See also http://www.c2.com/cgi/wiki?RunAndReturnSuccessor

10 March 2008



-16-

The main driver might look something like this.

while (r != ...) {
r = r .run();

}

Create a class for each line and you’re off.

5.5. Loop and switch

This approach has the advantage that it will work in any language with
loops and conditionals. It is an existence proof that any program which
can be written with gotos can be written without them. The primary dis-
advantage to this approach is that code can only jump to other code
within the same compilation unit. In a language where the multiway
branch does not fall through, every line would have to end with an
assignment to the line variable.

#include <stdio.h>

int main(int argc, char *argv[], char *envp[]) {
int line = 10;
int running = 1;
int n;

while(running) {
switch(line) {

case 10: printf("Integers\n");
case 20: n = 1;
case 30: printf("%d\n", n);
case 40: n = n + 1 ;
case 50: if(n <= 5) line = 30 else line = 999; break;
case 999: running = 0; break;

}
}

}

5.6. Continuations

Continuations[21, 22, 23] are a very powerful generalization of goto.
With continuations, not only do you get to transfer control to any code
you like, not only do you get to transmit data to the place you are
sending control to, but you also get to replace the entire call stack.
Continuations are so powerful that it is possible to implement goto in
terms of them. I d id this for Scheme using some of Peter Landin’s
ideas 7.

7 See http://www.sonoma.edu/users/l/luvisi/scheme/prog.scm

10 March 2008



-17-

Using my implementation of prog for scheme, a more or less direct trans-
lation might look like this.

(prog (n)
line-10 (display "Integers") (newline)
line-20 (set! n 1)
line-30 (display n) (newline)
line-40 (set! n (+ n 1 ))
line-50 (if (<= n 5) (go line-30))
line-999 (return #f))

6. Come From

No discussion of goto would be complete without a mention of Come
From[24]. Consider it mentioned.

References

1. John Von Neumann, First Draft of a Report on the EDVAC (Jun 1945).
http://en.wikipedia.org/wiki/First_Draft_of_a_Report_on_the_EDVAC.

2. Martin Campbell-Kelly (ed) and Michael R. Williams (ed), The Moore
School Lectures, MIT Press, Cambridge, Massachusetts (1985).

3. Maurice V. Wilkes, David j. Wheeler, and Stanley Gill, The Prepara-
tion of Programs for an Electronic Digital Computer (2nd ed), Addi-
son-Wesley (1957).

4. Peter Naur (ed), “Revised Report on the Algorithmic Language Algol
60,” Communications of the ACM, 3, 5, pp. 299-314 (May 1960).
http://www.standardpascal.org/Algol60-RevisedReport.pdf.

5. O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Program-
ming, Academic Press Inc. (London) Ltd. (1972). http://por-
tal.acm.org/citation.cfm?id=SERIES11430.1243380.

6. Martin Richards and Colin Whitby-Stevens, BCPL - the language and
its compiler, p. 27, Cambridge University Press (1980).

7. Peter Naur, “Go To Statements and Good ALGOL Style” in Computing: A
Human Activity, ACM Press (1992). http://portal.acm.org/cita-
tion.cfm?id=113602.

8. Edsger W. Dijkstra, “Go To Statement Considered Harmful,” Communi-
cations of the ACM, 11, 3, pp. 147-148 (Mar 1968).
http://doi.acm.org/10.1145/362929.362947.

9. Edsger W. Dijkstra, Notes on Structured Programming (Apr 1970).
http://www.cs.utexas.edu/˜EWD/ewd02xx/EWD249.PDF.

10. Donald D. Knuth, “Structured Programming with Goto Statements,” ACM
Computing Surveys, 6, 4, pp. 261-301 (Dec 1974).
http://pplab.snu.ac.kr/courses/adv_pl05/papers/p261-knuth.pdf.

11. Elliot Soloway, Jeffrey Bonar, and Kate Ehrlich, “Cognitive Strate-
gies and Looping Constructs: An Empirical Study,” Communications of
the ACM, 26, 11, pp. 853-860 (Nov 1983). http://cite-
seer.ist.psu.edu/555332.html.

12. Eric S. Roberts, “Loop Exits and Structured Programming,” ACM
SIGCSE Bulletin, 27, 1, pp. 268-272 (Mar 1995).

10 March 2008



-18-

http://doi.acm.org/10.1145/199691.199815.

13. Diomidis Spinellis, Code Reading, p. 44, Addison-Wesley (2003).

14. Martin E. Hopkins, “A Case for the Goto,” Proceedings of the ACM
annual conference, 2, pp. 787-790 (1972).
http://doi.acm.org/10.1145/800194.805860.

15. Donald E. Knuth, The Art of Computer Programming, Volumes 1-3.

16. George Ledin, Jr. in A Structured Approach to General Basic, p.
127, Boyd & Fraser Publishing Company, San Francisco, California
(1978).

17. Steven E. Ganz, Daniel P. Friedman, and Mitchell Wand, “Trampolined
Style,” International Conference on Functional Programming (1999).
http://citeseer.ist.psu.edu/ganz99trampolined.html.

18. David Tarditi, Peter Lee, and Anurag Acharya, “No Assembly
Required: Compiling Standard ML to C,” ACM Letters on Programming
Languages and Systems (1990). http://cite-
seer.ist.psu.edu/62903.html.

19. Guy Lewis Steele, Jr., “RABBIT: A Compiler for SCHEME,” AITR-474,
MIT (May 1978). ftp://publications.ai.mit.edu/ai-publica-
tions/pdf/AITR-474.pdf.

20. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley (1995).

21. John C. Reynolds, “Definitional interpreters for higher-order pro-
gramming languages,” Proceedings of the ACM annual conference, 2,
pp. 717-740 (1972). http://doi.acm.org/10.1145/800194.805852.

22. P. J. Landin, “Correspondence between ALGOL 60 and Church’s Lambda-
notation: part I,” Communications of the ACM, 8, 2, pp. 89-101 (Feb
1965). http://doi.acm.org/10.1145/363744.363749.

23. P. J. Landin, “Correspondence between ALGOL 60 and Church’s Lambda-
notation: part II,” Communications of the ACM, 8, 3 (Mar 1965).
http://doi.acm.org/10.1145/363791.363804.

24. R. Lawrence Clark, “A Linguistic Contribution to GOTO-Less Program-
ming,” Communications of the ACM, 27, 4, pp. 349-350 (Apr 1984).
http://doi.acm.org/10.1145/358027.358043.

10 March 2008


